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Abstract This paper considers the adaptive tracking problem for a class of first-order systems with

binary-valued observations generated via fixed thresholds. A recursive projection algorithm is proposed

for parameter estimation based on the statistical properties of the system noise. Then, an adaptive

control law is designed via the certainty equivalence principle. By use of the conditional expectations of

the innovation and output prediction with respect to the estimates, the closed-loop system is shown to

be stable and asymptotically optimal. Meanwhile, the parameter estimate is proved to be both almost

surely and mean square convergent, and the convergence rate of the estimation error is also obtained.

A numerical example is given to demonstrate the efficiency of the adaptive control law.

Key words Adaptive control, binary-valued observation, optimal tracking, parameter estimation,

stochastic system.

1 Introduction

Recently, binary-valued observation systems have attracted a lot of attention[1−9] due to
the wide use of binary-valued sensors, such as photoelectric sensors for positions, Hall-effect
sensors for speed and acceleration, EGO oxygen sensors in automotive emission control, a one-
bit (single-bit) quantizer in analog-to-digital conversion, distributed one-bit wireless sensors,
etc.[10]. The controlled output of such systems cannot be measured, and what can be measured
and used for designing controller is the information whether the system output is larger than a
given scalar, which is called threshold.

The threshold is a key factor for binary-valued output systems, which can be fixed or
adjustable. For example, the threshold of oxygen sensors[11] in industry is fixed, which depends
on the physical characteristics of sensors and cannot be changed. An example of adjustable
threshold is the coding process in communications, which is actually a protocol[12], where the
threshold can be set online according to the real need. Compared with the sensor with time-
varying thresholds, the one with fixed threshold has lower cost of production because of the less
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requirement of storage space, computational capability and energy, but it has poorer capability
of supplying information.

For the binary-valued observation systems, some results on identification, state estimation,
and fault detection can be found in [1, 6–7, 10, 13–15]. However, few works appear in literature
on adaptive control with set-valued observations. The main reason is that for identification
purpose the system input can be assumed to be periodic or normally distributed; while for
feedback control, the control input signal is decided by the control targets which may spoil the
above assumptions on inputs.

Thus, a control-dependent recursive identification algorithm is strongly demanded and some
related results have already been obtained. Zhao and Guo[16] studied the quantization system
identification under a class of persistent excitation inputs. Godoya, et al.[3] proposed an it-
erative batch algorithm for identifying the FIR systems using quantized output data under
persistent excitations, and maximum likelihood criterion was achieved as the iterative step
goes to infinity. Marelli, You, and Fu[5] investigated the identification of ARMA models with
intermittent quantized output observations under the persistently excited inputs and gave an
asymptotical optimal adaptive quantization scheme in the sense of minimum estimation error
covariance.

Inspired by these works, Guo, Zhang, and Zhao[4] studied the adaptive tracking control
of a class of first-order systems with binary-valued observations and time-varying thresholds.
Zhao, Guo, and Zhang[9] constructed a two-stage algorithm to discuss the adaptive control of
linear systems to track periodic targets with set-valued information. This paper takes a gain
system as an example to study the adaptive tracking problem to bounded reference signals via
binary-valued observations with fixed thresholds.

Compared with [4], the prominent characteristic of this paper is that the threshold is fixed.
As mentioned above, the binary-valued observations with fixed thresholds supply less informa-
tion than the ones with time-varying thresholds. Thus, the design of the adaptive control laws
and the analysis of the closed-loop systems are more difficult. The reference signals in this
paper are bounded and more common than the periodic ones in [9]. Accordingly, the adaptive
control laws are more complex and the two-stage algorithm in [9] does not work here.

To overcome these difficulties, we will make full use of the statistical property of the system
noise to generate an innovation sequence, and then take advantage of the a priori information
on the unknown parameter to construct the identification algorithm and design adaptive control
laws. It should be pointed out that some techniques developed here can be used to deal with
the case with time-varying thresholds. More importantly, the innovation construction method
gets rid of some strict constraints on the system inputs, such as periodic and i.i.d. (independent
and identically distributed) properties, etc.

For a class of first-order system, this paper proposes a projection algorithm to estimate
the unknown parameter, and the adaptive tracking control is constructively designed via the
certainty equivalence principle. By use of the conditional expectation of the binary-valued
observation with respect to the estimates, it is shown that the closed-loop system is stable and
the adaptive control law is asymptotically optimal under some mild a priori information on the
unknown parameter, statistical property of the noises and the signal to be tracked. Meanwhile,
the convergence of the parameter estimate is proved and its convergent rate is also obtained.

The rest of this paper is organized as follows. Section 2 formulates the problem; Section 3
gives a projection algorithm for parameter estimation and a constructive method of designing
adaptive control; Section 4 analyzes the performance of the closed-loop system, including the
stability of the closed-loop system and the optimality of the adaptive control; Section 5 uses
a numerical example to demonstrate the tracking efficiency; Section 6 gives some concluding
remarks and related future works.
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2 Problem Formulation

Consider a class of first-order systems of the following form:

yk = θuk + dk, k = 1, 2, · · · , (1)

where uk ∈ R, θ ∈ R and {dk, k ≥ 1} are, respectively, the input, unknown parameter and
noise; yk is the controlled output, which cannot be measured but is the target signal to be
regulated. The observation that can be measured and used to design control is the following
binary-valued signal:

sk = I[yk≤C] =

{
1, if yk ≤ C,

0, otherwise,
(2)

where C ∈ (−∞,∞) is a known fixed threshold.
The purpose of this paper is to design an adaptive control to drive the controlled output yk

to track a known reference signal {y∗
k}. In other words, at time k, we will construct an adaptive

control uk based on the past observations {s1, s2, · · · , sk−1, u1, u2, · · · , uk−1} to minimize the
following tracking index:

Jk = E(yk − y∗
k)2. (3)

Now, the a priori information about the unknown parameter is given and some conditions
about the reference signal and system noise also are presented.

Assumption 1 The a priori information of the unknown parameter θ is that |θ| ∈ [θ, θ],
where θ and θ are known constants with 0 < θ < θ < ∞.

Assumption 2 The target output {y∗
k, k ≥ 1} is a deterministic signal sequence, and there

are known constants y∗ and y∗ with 0 < y∗ ≤ y∗ < ∞ such that |y∗
k| ∈ [y∗, y∗].

Assumption 3 {dk, k ≥ 1} is an independent and identically distributed (i.i.d.) stochastic
sequence with zero mean and finite variance. The distribution function denoted by F (x) of
d1 is assumed to be known. The density function denoted by f(x) of d1 is symmetrical and
monotonically decreasing on [0,∞) in the sense of f(x1) ≥ f(x2) with 0 ≤ x1 ≤ x2 < ∞, and
its support contains [−T, T ] with T = |C| + 3 θy∗

θ , i.e., [−T, T ] ⊆ {x ∈ (−∞,∞) : f(x) �= 0}.
Remark 1 As mentioned in [4], Assumption 1 not only implies that the system is control-

lable, but also tells us the controllability degree of the system (1). In practice, the choosing
of θ mainly depends on the experiential knowledge of θ. And, such choosing is also relatively
flexible since the method used in this paper is irrelevant to the exact value of θ.

Remark 2 Assumption 2 describes the properties of the reference signals, based on which
a control law can be designed to ensure a sufficient persistent excitation condition for param-
eter estimate. Assumption 3 shows the statistical properties of the system noises with which
many kinds of random variables are satisfied, such as normal distribution with zero mean, t-
distribution with n > 2 degrees of freedom, uniform distribution on [−U, U ] with U ≥ T , and
so on.

3 Design of Adaptive Control Law

Firstly, let us consider the case that the parameter θ is known. In this case, the control law
that minimizes (3) should satisfy

y∗
k = θuk. (4)

Substituting the above into (1), we obtain the following closed-loop equation:

yk − y∗
k − dk = 0,
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and then
Jk = E(yk − y∗

k)2 = Ed2
k = Ed2

1.

However, in the case that the parameter θ is unknown, we need to estimate it. To do so,
we propose the following recursive projection algorithm:

θ̂k = Π Θ

{
θ̂k−1 + β

Pk−1uk

1 + Pk−1u2
k

[
F (C − θ̂k−1uk) − sk

]}
, (5)

Pk = Pk−1 − γ
P 2

k−1u
2
k

1 + Pk−1u2
k

, (6)

where Θ � [−θ, θ], initial value |θ̂0| ∈ [θ, θ] and P0 > 0 can be arbitrarily chosen, β > 0 and
γ ∈ (0, 1] are two real numbers; ΠΘ(·) is a projection operator defined by ΠΘ(x) = argmin

z∈Θ
|x−z|

for any x ∈ R; F (·) is the distribution function given by Assumption 3; C is the threshold in (2).
According to the certainty equivalence principle, replacing the θ in (4) by its estimate θ̂k−1,

we obtain an equation of the adaptive control law: y∗
k = θ̂k−1uk, from which uk cannot be well

defined when θ̂k−1 = 0. Thus, we make the following modification:

uk =
y∗

k

θ̂k−1

I[θ≤|θ̂k−1|≤θ] +
y∗

k

θ

(
I[0<θ̂k−1<θ] − I[−θ<θ̂k−1≤0]

)
. (7)

The modification form given by (7), different from the conventional one[17], is to make full
use of the a priori information about θ.

Figure 1 shows the process of designing the adaptive control law.

*
ky (7) ku

kd
ky binary-valued

sensor
ks

(5) — (6)k̂

Figure 1 Design mechanism of the adaptive control law

Remark 3 Though the a priori information on θ is |θ| ∈ [θ, θ], we choose Θ = [−θ, θ] as
the projection set since [−θ, θ] is convex and compact, and suitable for projection calculation.
The term F (C− θ̂k−1uk)−sk in (5) can be seen as the innovation from the latest binary-valued
observation since E[sk|θ̂k−1] = F (C−θuk). It should be pointed out that the algorithm (5)–(6)
would be not convergent if F (C − θ̂k−1uk) − sk was replaced by sk − F (C − θ̂k−1uk). It is
the very introducing of such kind of innovations that make the adaptive control via set-valued
observations and fixed thresholds become possible.

Remark 4 The algorithm (5)–(6) can also work in the case of time-varying thresholds. For
example, if C was replaced by ck = θ̂k−1uk, then 2(F (C− θ̂k−1uk)−sk) becomes I[yk>uk θ̂k−1]

−
I[yk≤ukθ̂k−1]

, which implies the identification algorithm in [4]. But, if ck was set to be C in [4],
then there would be I[yk>ukθ̂k−1]

− I[yk≤ukθ̂k−1]
= I[yk>C] − I[yk≤C], from which one cannot

get (5)–(6).
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4 Stability and Optimality of the Closed-Loop System

In this section, we discuss the performance of the closed-loop system under the control
law (7), including the stability and asymptotical optimality. Meanwhile, the convergence of pa-
rameter estimates given by the algorithm (5)–(6) is proved and its convergence rate is obtained.

Theorem 1 Consider the system (1) with the binary-valued output (2) under the adaptive
control (5)–(7). If Assumptions 1–3 hold, then the closed-loop system is stable in the sense of
sup
k≥0

Ey2
k < ∞.

Proof From (7), it can be seen that |uk| ≤ y∗

θ . And then, by (1) and Assumption 1, we
have

|yk| ≤ |θ||uk| + |dk| ≤ θy∗

θ
+ |dk|.

Therefore,

y2
k ≤ (θy∗)2

θ2 +
2θy∗

θ
|dk| + d2

k,

which implies

Ey2
k ≤ (θy∗)2

θ2 +
2θy∗

θ

√
Ed2

1 + Ed2
1 < ∞

due to Assumption 3 and Schwarz Inequality ([18], pp. 105). Thus, the theorem is proved.
Theorem 2 Under the conditions of Theorem 1, the closed-loop system is asymptotically op-

timal in the sense of lim
k→∞

Jk = Ed2
1. Meanwhile, the parameter estimates are strongly consistent

and mean square convergent to the real parameter: lim
k→∞

θ̂k = θ a.s. and lim
k→∞

E(θ̂k − θ)2 = 0.

Remark 5 Compared with the solutions provided in [4], some new technical difficulties
crop up in the proof of Theorem 2. For example, more detailed and deep analysis about the
distribution function of the system noise is needed since F (·) is involved in (5)–(6), and the
influence of the fixed threshold C on the closed-loop system has to be carefully considered.

Proof We take three steps to prove the theorem.
Step 1 To prove mean square convergence, i.e., lim

k→∞
E(θ̂k − θ)2 = 0.

From (7) it can be seen that

uk ∈ Fk−1 = σ(di, 1 ≤ i ≤ k − 1) (8)

and
0 < M1 ≤ |uk| ≤ M2 < ∞ (9)

with M1 =
y∗

θ
and M2 = y∗

θ .

Let θ̃k = θ̂k − θ, k = 0, 1, · · · , and notice that Θ is a convex-compact set. Then, by the
property of the projection operator we have

|θ̃k| ≤
∣∣∣∣θ̃k−1 + β

Pk−1uk

1 + Pk−1u2
k

[
F (C − θ̂k−1uk) − sk

]∣∣∣∣, (10)

which together with (F (C − θ̂k−1uk) − sk)2 ≤ 1 implies

θ̃2
k ≤ θ̃2

k−1 − 2
βPk−1uk

1 + Pk−1u2
k

θ̃k−1

[
sk − F (C − θ̂k−1uk)

]
+

β2P 2
k−1u

2
k

(1 + Pk−1u2
k)2

.
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Thus, by (8) we can get

E[θ̃2
k|Fk−1]

≤ θ̃2
k−1 +

β2P 2
k−1u

2
k

(1 + Pk−1u2
k)2

− 2
βPk−1uk

1 + Pk−1u2
k

θ̃k−1

(
E[sk|Fk−1] − F (C − θ̂k−1uk)

)

= θ̃2
k−1 +

β2P 2
k−1u

2
k

(1 + Pk−1u2
k)2

− 2
βPk−1uk

1 + Pk−1u2
k

θ̃k−1

(
F (C − θuk) − F (C − θ̂k−1uk)

)
. (11)

Letting α = 2θM2, noticing that |θ̃k| ≤ 2θ, by (5), (9), and Assumption 1, we know

|C − θuk| ≤ |C| + |θ||uk| ≤ |C| + θM2 = T − α;

and, by (19) in Appendix and C − θ̂k−1uk = (C − θuk) − ukθ̃k−1,

ukθ̃k−1

(
F (C − θuk) − F (C − θ̂k−1uk)

) ≥ f(ζ)u2
kθ̃2

k−1, (12)

where ζ = max
M1≤|uk|≤M2

{|C − θuk|} + 2θM2 = |C| + |θ|M2 + 2θM2. Here, we have used the fact

that max
M1≤|uk|≤M2

{|C − θuk|} = |C| + |θ|M2.

Substituting (12) into (11) results in

E[θ̃2
k|Fk−1] ≤ θ̃2

k−1 − 2βf(ζ)
Pk−1u

2
k

1 + Pk−1u2
k

θ̃2
k−1 +

β2P 2
k−1u

2
k

(1 + Pk−1u2
k)2

=
(

1 − 2βf(ζ)
u2

k

u2
k + P−1

k−1

)
θ̃2

k−1 +
β2P 2

k−1u
2
k

(1 + Pk−1u2
k)2

.

By (9) and (21) in Appendix, we have

E[θ̃2
k|Fk−1] ≤

(
1 − 2βf(ζ)M2

1

M2
2 + P−1

0 + γM2
2 (k − 1)

)
θ̃2

k−1 + β2M2
2

(
1
P0

+
γM2

1 (k − 1)
(1 − γ)P0M2

2 + 1

)−2

,

which implies

Eθ̃2
k ≤

(
1 − 2βf(ζ)M2

1

M2
2 + P−1

0 + γM2
2 (k − 1)

)
Eθ̃2

k−1 + β2M2
2

(
1
P0

+
γM2

1 (k − 1)
(1 − γ)P0M2

2 + 1

)−2

. (13)

By Assumption 1 and M2 = y∗

θ , we have

ζ = |C| + |θ|M2 + 2θM2 ≤ |C| + θM2 + 2θM2 = |C| + 3
θy∗

θ
= T. (14)

Since the support of f(x) contains [−T, T ], f(ζ) > 0. Thus, we can conclude that

β2M2
2

(
1

P0
+ γM2

1 (k−1)

(1−γ)P0M2
2 +1

)−2

2βf(ζ)M2
1

M2
2 +P−1

0 +γM2
2 (k−1)

→ 0, as k → ∞,

which together with (13) and Theorem 1.2.22 of [17] implies Eθ̃2
k = E(θ̂k − θ)2 → 0, as k → ∞.
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Step 2 To prove almost sure convergence, i.e., lim
k→∞

θ̂k = θ, a.s.

By (11) and (12), we have

E[θ̃2
k|Fk−1] ≤ θ̃2

k−1 +
β2P 2

k−1u
2
k

(1 + Pk−1u2
k)2

,

and from (21) in Appendix,

E

( ∞∑
k=1

β2P 2
k−1u

2
k

1 + Pk−1u2
k

)
< β2M2

2

∞∑
k=1

(
1
P0

+
γM2

1 (k − 1)
(1 − γ)P0M2

2 + 1

)−2

< ∞.

Thus, by Lemma 1.2.2 of [19], |θ̃k| converges almost surely to a bounded limit. Notice that
lim

k→∞
Eθ̃2

k = 0. Then, there is a subsequence of |θ̃k| that converges almost surely to 0. Conse-

quently, θ̃k almost surely converges to 0, or equivalently, lim
k→∞

θ̂k = θ, a.s.

Step 3 To prove asymptotical optimality, i.e., lim
k→∞

Jk = Ed2
1.

Since θ̂k−1
a.s.−−→ θ, by (7) we have θ̂k−1uk − y∗

k
a.s.−−→ 0, and thus,

θuk − y∗
k = (θ̂k−1uk − y∗

k) − (θ̂k−1 − θ)uk
a.s.−−→ 0. (15)

By (9) and Assumptions 1–3, it can be seen that

|θuk − y∗
k| ≤ |θuk| + |y∗

k| ≤
θy∗

θ
+ y∗ < ∞.

Thus, by (15) and Lebesgue Dominated Convergence Theorem (see [18], pp. 100), one can get

lim
k→∞

E(θuk − y∗
k)2 = 0. (16)

On the other hand, by (1) we know

E(yk − y∗
k)2 = E (θuk + dk − y∗

k)2

= Ed2
k + 2E[dk(θuk − y∗

k)] + E(θuk − y∗
k)2.

From Assumption 3 and (8), we have E[dk(θuk − y∗
k)] = EdkE(θuk − y∗

k) = 0, and thus,

E(yk − y∗
k)2 = Ed2

1 + E(θuk − y∗
k)2.

This together with (16) renders

Jk = E(yk − y∗
k)2 → Ed2

1, as k → ∞,

which implies the asymptotical optimality of the closed-loop system.
Corollary 1 Under the condition of Theorem 2, the parameter estimate has the following

convergence rate

E(θ̂k − θ)2 = O

(
1
k

)

with 2ρf
(|C| + 3 θy∗

θ

)
>

[
(y∗θ)/(θy∗)

]2 and ρ = β
γ .
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Proof Since f(x) is monotonically decreasing on [0,∞), by (13) and (14) we have

Eθ̃2
k ≤

(
1 − 2ρf(|C| + 3θy∗/θ)(M1/M2)2

k − 1 + (M2
2 + P−1

0 )/γM2
2

)
Eθ̃2

k−1 + β2M2
2

(
1
P0

+
γM2

1 (k − 1)
(1 − γ)P0M2

2 + 1

)−2

,

which together with Lemma 2 in Appendix implies the corollary.
Remark 6 Corollary 1 describes the influence of β and γ on the convergence rate of the

algorithm (5)–(6). Similar to the case of time-varying thresholds, we can choose suitable β and
γ such that the convergence rate of the identification algorithm (5)–(6) is of order 1

k .

5 Simulation

Consider a gain system
yk = θuk + dk

with the binary-valued output observation

sk = I[yk≤C].

Here C = 2 is the fixed threshold. The time-invariant parameter θ = 6 is unknown, but its range
[1, 15] is known, i.e., θ = 1, θ = 15. The system noise {dk, k ≥ 1} satisfies Assumption 3, the
density function of d1 is f(x) = 1√

0.2π
e−50x2

and its distribution function is F (x) =
∫ x

−∞ f(u)du.
Our purpose is to make yk track the reference signal y∗

k ≡ 16, which implies y∗ = y∗ = 16.
According to (7), we have the following adaptive control law:

uk =
16

θ̂k−1

I[1≤|θ̂k−1|≤15] +
16
1

(
I[0<θ̂k−1<1] − I[−1<θ̂k−1≤0]

)
, (17)

where θ̂k−1 is given by (5)–(6) with β = 1 and γ = 0.5 and initial values θ̂0 = P0 = 1.
Figure 2 describes a trajectory of yk under the control (17) within 1000 steps. The system

output yk seems to be a white noise around the target y∗
k, which means that θuk has tracked

the target and the error is only caused by the system noise dk.

0 200 400 600 800 1000
15

15.2

15.4

15.6

15.8

16

16.2

16.4

16.6

16.8

17

Figure 2 Tracking performance of yk (solid) to y∗ ≡ 16 (dashed)
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Figure 3 shows the estimation convergence of θ̂k in trajectory, which and the performance
in Figure 2 are both consistent with the results of Theorem 2.

0 200 400 600 800 1000
5.5

5.6

5.7

5.8

5.9

6

6.1

6.2

6.3

6.4

6.5

Figure 3 Estimation convergence of θ̂k (solid) to the true parameter θ = 6 (dashed)

6 Conclusion

In this paper, we have studied the adaptive tracking control via binary-valued observations
with fixed threshold. An innovation sequence in the identification algorithm was introduced.
Under some mild conditions on the a priori knowledge of the unknown parameters and reference
signals, we proved the stability of the closed-loop system and the asymptotical optimality of
the adaptive tracking, and obtained a convergence rate of identification algorithms.

There are many challenging and meaningful open problems in this fields, such as how to
design identification and adaptive control laws with multi-threshold quantization observations,
how to deal with the more general cases of system models, etc. The idea of introducing a proper
kind of innovation sequence into the identification algorithm may help us to solve these general
identification and adaptive problems.
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Appendix

Lemma 1 Assume that α and b are real numbers with 0 < α < T and α + |b| ≤ T . Then,
for the functions F (·) and f(·) defined in Assumption 3, the following inequality holds for any
x ∈ [−α, α],

x
(
F (b) − F (b − x)

) ≥ f(|b| + α)x2. (18)

Furthermore, if b = b(x) ∈ [α−T, T −α] is a continuous function of x, then for any x ∈ [−α, α],

x
(
F (b(x)) − F (b(x) − x)

) ≥ f(B + α)x2 (19)

with B = max
x∈[−α,α]

|b(x)|.
Proof Since the support of f(x) contains [−T, T ], F (x) is continuously differentiable on

[−T, T ]. By the differential mean value theorem and α + |b| ≤ T , for any x ∈ [−α, α], there
exists ξ = ξ(x) between b and b − x such that F (b) − F (b − x) = f(ξ)x. Noticing f(x) is
symmetrical and monotonically decreasing on [0,∞), we have

x (F (b) − F (b − x)) = f(ξ)x2 ≥ f (max{|b − α|, |b + α|})x2,
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which implies (18) by max{|b − α|, |b + α|} = |b| + α.
Now, we prove (19). Noticing that f(x) is monotonically decreasing on [0,∞), for any

x ∈ [0, α], by (18) we have

x
(
F (b(x)) − F (b(x) − x)

) ≥ x
(
F (−B) − F (−B − x)

)
≥ f

(| − B| + α
)
x2 = f(B + α)x2.

Similarly, for any x ∈ [−α, 0), we have

x
(
F (b(x)) − F (b(x) − x)

)
= −x

(
F (b(x) − x) − F (b(x))

)
≥ −x

(
F (B − x) − F (B)

)
= x

(
F (B) − F (B − x)

)
≥ f

(
B + α

)
x2.

Thus, (19) is true.
Lemma 2[4] Suppose that {xk, k ≥ 1} is a sequence of real numbers such that for all

sufficiently large k,

xk ≤
(
1 − λ

k + a

)
xk−1 +

μ

(k − 1)2+δ
,

where a ∈ {x : x ∈ R, x �= −1,−2, · · · }, λ > 0, δ ≥ 0. Then

xk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

O
( 1

kλ

)
, 0 < λ < 1 + δ,

O
( log k

k1+δ

)
, λ = 1 + δ,

O
( 1

k1+δ

)
, λ > 1 + δ.

Lemma 3[4] Assume there exist constants M2 > M1 > 0 such that M1 ≤ |uk| ≤ M2. Then,
for any initial value P0 > 0, Pk have the following properties:

0 < Pk+1 < Pk and lim
k→∞

Pk = 0; (20)(
1
P0

+ γM2
2k

)−1

≤ Pk ≤
(

1
P0

+
γM2

1

(1 − γ)P0M2
2 + 1

k

)−1

. (21)


